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Resumen

La generación de heuristicas para un determinado problema es un proceso que se ha

asociado a un Experto y cuando las condiciones del problema cambian es necesario

volver a recurrir al experto para poder generar una nueva heuristica para dar una

solución al problema.

Algunas veces se pueden utilizar otro tipo de herramientas para tratar de dar

una solución al problema, dichas herramientas tratan de suprimir la interacción con

el experto. Las Metaheuristicas tratan de dar una solución aproximada mientras

que las hyperheuristicas buscan una metodologia para solucionar el problema.

Las HiperHeuristicas usadas para generar heuristicas estaban basadas en Progra-

mación Genetica, aunque se ha demostrado que la Programación Genetica tiende

a generar soluciones que no en todos sus casos se puede aplicar dado que genera

soluciones que incluyen elementos no terminales.

En la presente Tesis se muestra el uso de otras metaheuristicas como motor de

busqueda de la Gramatica Evolutiva la cual se utilizo como una HiperHeuristica

para la generación de Heuŕısticas. Los parametros de estas metaheuristicas fueron

optimizados mediante un Covering Arrays para poder determinar con cuales valores

se obtienen los mejores resultados.

Las heuŕısticas generadas fueron aplicadas al problema de empacado y los re-

sultados obtenidos por estas heuristicas se compararon contra los obtenidos con las

heuŕısticas clásicas. Los resultados fueron comparados usando la prueba no para-

metrica de Friedman.





Abstract

The generation of heuristics for a given problem is a process that has been associated

to an Expert and when the problem’s conditions change is necessary to generate a

new heuristic to give a solution to the problem.

Sometimes it is possible to use another kind of tools to try to find a solution,

these tools try to suppress the interaction with the Expert. The metaheuristics try

to give an approximate solution while hyperheuristicas seek a methodology to solve

the problem.

The Hyperheuristic used to generate heuristics were based on Genetic Program-

ming, but it has been shown that the Genetic Programming produces solutions that

can’t be applied because the solutions includes non-terminal elements.

The present thesis uses other metaheuristics as Search Engine of Grammar Evo-

lution which has been used as HyperHeuristica to generate heuristics. The parame-

ters of these metaheuristics were tuning using Covering Arrays to look up the best

values.

The generated heuristics were applied to the bin packing problem and the results

were compared against those obtained with classical heuristics. The results were

compared using the nonparametric Friedman test.
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Chapter 1

Introduction

The heuristic generation process has been associated by an Expert in a certain

area. Sometimes the Expert needs to analyze the problem to determine the main

components and propose a ways to solve it, these methods are known as Heuristics.

The heuristics is a type of strategy that drastically limits the search for solutions

and works in polynomial time, however the heuristics doesn’t guarantee optimal

solutions; in fact, does not guarantee that you have a solution. Everything that can

be said for a useful heuristic is that it offers solutions that are good enough most

of the time and depending the instances used, because the heuristic doesn’t work

equal for all problems instances.

When a problem doesn’t have heuristics is necessary to resort to an expert or ap-

ply another methodology like metaheuristics. The metaheuristic is a master strategy

that guides and modifies other heuristics to produce solutions beyond those typically

generated in local search optimization. The metaheuristics are based on physical

phenomena, swarm intelligence, evolutionary processes, etc.

If the heuristics and metaheuristics aren’t enough to solve a problem, or is nec-

essary to find another kind of solutions, then can be applied the Hyper-Heuristics.

An Hyper-Heuristic can be defined as heuristics that search a space of heuristics.

In the present thesis is proposed to use the Hyper-Heuristic to evolve automati-
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2 Chapter 1. Introduction

cally heuristics, using metaheuristics as hyper-heuristic’s kernel. The problem used

in the present work is the bin packing problem, in this problem have been im-

plemented heuristics and metaheuristics. The Hyper-heuristic’s kernels have some

parameters that need to be optimized, in this approach the Covery Arrays method

has been implemented to discern with which parameter the Hyper-Heuristic can gen-

erate the best heuristic. The Grammars used by the Hyper-Heuristic’s kernels are

proposed, those grammars allows to generated basic heuristics for an instance or for

an instance set, also lets to generated heuristics for online or offline instances. The

heuristics proposed have different performance over the instances of the art-state, an

example of the use of the classical heuristics and the grammatical evolution is shown

in Appendix A. The results obtained by the heuristics evolved and the heuristics of

the art-state have been compared through the Friedman non-parametric test.

1.1 Motivation

One motivation for the present research is fact that the Genetic Programming has

been used as the only way to generate heustics, under the hyper-heuristic concept.

Even though exists many representations of the Genetic Programming, like the linear

Genetic Programming or Probabilistic Model Building Genetic Programming, all of

them use the same optimization paradigm: the Genetic Algorithm.

Although the Bin Packing Problem has been widely studied, there are several

researchers trying to find better algorithms or methods that can be apply to this kind

of problem. One of this methods applied are the Hyper-Heuristics, either heuristic

selection or generation, who are looking to generalize the solutions obtained for a

instance set.
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1.2 Hypothesis

It’s possible to use metaheuristics as hyper-heuristic’s kernel to generate heuristics

with similar performance, based on the fitness quality, to the best heuristics shown

in the art-state.

1.3 Objectives

1.3.1 General Objective

• To generate automatically heuristics that allow for solving several different Bin

Packing Problem instances by using Hyper-Heuristics based on metaheuristics.

1.3.2 Specific Objectives

a) To analyze the Hyper-Heuristics based on metaheuristics and the Kernel used

in it.

b) To search metaheuristics to be used by Hyper-Heuristics based on metaheuris-

tics.

c) To implement feasible metaheuristics into the Hyper-Heuristic kernell.

d) To generate heuristics for each instances and analyze the results against the

results obtained by classical heuristics.

e) To analyze the heuristic components to improve them.

f ) To generate heuristics for an instance set, to reduce the heuristics generated

for the entire set.
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1.4 Methodology

The methodology followed to develop the present investigation was:

First analyze the Bin Packing Problem, the instances used in the art-state, the

heuristics and exact algorithms used to try to solve it and the fitness functions used

to discern the quality of the solutions. Is necessary to codify the heuristics and

obtain the solutions for each instances using differents fitness functions.

Secondly find an alternative to Genetic Programming metaheuristic, analyze the

alternatives and the advantages over Genetic Programming. Make test to determi-

nate the best metaheuristic to be used to generate heuristics.

Finally develop an methodology based on hyper-heuristics to generate heuristics

for the Bin Packing Problem. Perform test and obtain the heuristics for each instance

set and compare the results obtained were used non-parametric test.

1.5 Structure of the Thesis

The thesis is structured as follows: Chapter 2 presents a review of the more rele-

vant literature about the Bin Packing Problem, its instances, heuristics and fitness

functions applied. Chapter 3 defines the Hyper-Heuristics and the kind of them.

Chapter 4 shows the Genetic Programming and the Grammatical Evolution with

several algorithms as search method. Chapter 5 introduces the heuristic generation

for each instance by using Grammatical Evolution, the grammar used in this chapter

is based on a Genetic Programming work. The Hyper-Heuristic concept is shown

in Chapters 6 and 7, in those chapters are generated an heuristic for each instance

set, also it was proposed new grammars to improve the results obtained in previous

chapters. Chapter 8 includes a clustered version to reduce heuristics generated.

Final remarks, contributions and future work are committed in chapter 9 .
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Chapter 2

Bin Packing Problem

2.1 Introduction

The Bin Packing Problem (BPP) [1] can be described as follows: given n items that

need to be packed in the lowest possible number of bins, each item has a weight

wj, where j is the element; the max capacity of the bins c is also available. The

objective is to minimize the bins used to pack all the items, given that each item is

assigned only to one bin, and the sum of all the items in the bin can not exceed the

bin’s size.

This problem has been widely studied, including the following:

a) Proposing new theorems [2, 3].

b) Developing new heuristic algorithms based on Operational Research concepts

[4, 5].

c) Characterizing the problem instances [6, 7, 8].

d) Implementing metaheuristics [9, 10, 11, 12].

This problem has been shown to be an NP-Hard optimization problem [13]. A

mathematical definition of the BPP is:

7



8 Chapter 2. Bin Packing Problem

Minimize:

z =
n∑

i=1

yi (2.1)

Subject to the following constrains and conditions:

n∑
j=1

wjxij ≤ cyi i ∈ N = {1, . . . , n} (2.2)

n∑
i=1

xij = 1 j ∈ N (2.3)

yi ∈ {0, 1} i ∈ N (2.4)

xij ∈ {0, 1} i ∈ N, j ∈ N (2.5)

where:

a) wj: weight of the j item.

b) yi =

1 if the bin i have items

0 otherwise

c) xij =

1 if the piece j is in the container i

0 otherwise

d) n: number or available bins.

e) c: capacity of each bin.

The algorithms for the BPP instances can be classified as online or offline [8]. We

have algorithms considered online if we don’t know the items before starting the

packing process, and offline if we know all the items before starting. In this research

we worked with both algorithms.
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2.2 Tests Instances

Beasley[14] proposed a collection of test data sets, known as OR-Library and main-

tained by the Beasley University, which were studied by Falkenauer[15]. This col-

lection contains a variety of test data sets for a variety of Operational Research

problems, including the BPP in several dimensions. For the one dimensional BPP

case the collection contains eight data sets, that can be classified in two classes:

a) Unifor The data sets from binpack1 to binpack4 consist of items of sizes uni-

formly distributed in (20, 100) to be packed into bins of size 150. The number

of bins in the current known solution was found by [15].

b) Triplets The data sets from binpack5 to binpack8 consist of items from (24, 50)

to be packed into bins of size 100. The number of bins can be obtained dividing

the size of the data set by three.

Scholl[16] proposed another collection of data sets, only 1184 problems were

solved optimally. Alvim [17] reported the optimal solutions for the remaining 26

problems. The collection contains three data sets:

a) Set 1 It has 720 instances with items drawn from a uniform distribution on

three intervals [1, 100], [20, 100], and [30, 100]. The bin capacity is C = 100,

120, and 150 and n = 50, 100, 200, and 500.

b) Set 2 It has 480 instances with 3, 5, 7 and 9 items. It also includes the

following parameters:

. C = 1000

. n = 50, 100, 200, 500.

. w = C/3, C/5, C/7, C/9.

. δ = 20%, 50%, 90%.
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This data set includes desired average weight ( w) and the maximal deviation

of the single value of w ( δ). For example, with w = C/5 and δ = 20% the

weights are randomly chosen from the interval [160, 240].

c) Set 3 It has 10 instances with C = 100,000, n = 200, and items are drawn

from a uniform distribution on [20000, 35000]. Set 3 is considered the most

difficult of the three sets.

2.3 Fitness Measure

There are many Fitness Measures used to discern the results obtained by heuristics

and metaheuristics algorithms, the most simple fitness measure used with the BPP

is the number of Bins used (see Eq. (2.6)) . In [18] two Fitness Measures are shown,

the first measure (see Eq. (2.7)) tries to find the difference between the used bins

and the theorical upper bound on the bins needed. The second (see Eq. (2.8)) was

proposed in [10] and rewards full or almost full bins; the objective is to fill each bin,

minimizing the free space.

Fitness = B (2.6)

Fitness = B −
∑n

i=1wi

C
(2.7)

Fitness = 1−


∑n

i=1

(∑m
j=1 wjxij

C

)2
n

 (2.8)

where:

a) B Number of bins used.

b) n Number of containers.



2.4. Exact Methods 11

c) m Number of pieces.

d) wj j-th’s piece size.

e) xij =

1 if the piece j is in the container i

0 otherwise

f ) C Bin capacity.

2.4 Exact Methods

Martello and Toth proposed the MTP algorithm [1], this algorithm is based on

a First-Fit decreasing. The items are initially sorted by decreasing weights. The

algorithm indexes the bins according to the order in which they are initialized.

A decision tree is made, at each node is assigned an item starting with largest, the

problem space is bounded by n! where n is the number of elements. The procedures

L2 and L3 are applied to reduce the current problem, those procedures can be found

in [1]. Also is used a backtracking step to removal an item and assign it to the next

feasible bin.

This algorithm is have been widely used to obtain the results of instances set, due

the BPP is an NP-Hard problem this algorithm can’t be applied to large instances.

The results obtained by MTP, using the fitness functions described previously,

are shown in Table 2.1.
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Instance Fitness 2.6 Fitness 2.7 Fitness 2.8

bin1data 78378 3727.680200 64.307340
bin2data 20246 280.476930 24.725328
bin3data 562 11.939499 0.390077
binpack1 981 11.866669 0.421557
binpack2 2032 10.513344 0.180042
binpack3 4024 11.293335 0.097509
binpack4 8011 10.873352 0.047260
binpack5 400 0.0 0.0
binpack6 800 0.0 0.0
binpack7 1660 0.0 0.0
binpack8 3340 0.0 0.0
hard28 1972 6.615009 0.167276

Table 2.1: Results obtained from the Test Instances using the Fitness Functions and
MTP Algorithm

The MTP algorithm was used with the Fitness Functions shown in Section 2.3 and
was applied to solve the Test Instances shown in Section 2.2. The results shown in
this table are the total from the results from each instance set.

2.5 Classic Heuristics

Heuristics have been used to solve the BPP, obtaining good results. In [4] shows the

following heuristics as Classical Heuristics, these heuristics can be used as online

heuristics if the items need to be packed as they come in or offline heuristics if the

items can be sorted before to starting the packing process:

a) Best Fit (BF)[19] Puts the piece in the fullest bin that has room for it, and

opens a new bin if the piece does not fit in any existing bin.

b) Worst Fit (WF)[4] Puts the piece in the emptiest bin that has room for it,

and opens a new bin if the piece does not fit in any existing bin.

c) Almost Worst Fit (AWF)[4] Puts the piece in the second emptiest bin if that

bin has room for it, and opens a new bin if the piece does not fit in any open

bin.
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d) Next Fit (NF)[20] Puts the piece in the right-most bin and opens a new bin if

there is not enough room for it.

e) First Fit (FF) [20] Puts the piece in the left-most bin that has room for it and

opens a new bin if it does not fit in any open bin.

Even though there are some heuristics having better performance than the heuris-

tics shown in the present section [21, 22, 23, 3, 24], such heuristics have been the

result of research of Lower and Upper bounds to determine the minimal number of

bins.

Instance AWF BF FF NF WF

bin1data 21446 20994 20994 23615 21030
bin2data 21446 20994 20994 23615 21030
bin3data 603 596 596 650 596
binpack1 1147 1038 1044 1279 1131
binpack2 2353 2154 2162 2669 2342
binpack3 4626 4240 4255 5300 4614
binpack4 9167 8407 8430 10548 9154
binpack5 420 400 400 400 400
binpack6 820 800 800 800 800
binpack7 1680 1660 1660 1660 1660
binpack8 3360 3340 3340 3340 3340
hard28 2050 1995 1995 2755 2024

Table 2.2: Results obtained using the Fitness Function 2.6 and the online classic
heustics

The online classic heuristics were used with the Fitness Functions 2.6 and was ap-
plied to solve the Test Instances shown in Section 2.2. The results shown in this
table are the total from the results from each instance set.
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Instance AWF BF FF NF WF

bin1data 1480.476800 1028.477500 1028.477500 3649.477500 1064.477300
bin2data 1480.476800 1028.477500 1028.477500 3649.477500 1064.477300
bin3data 52.939500 45.939500 45.939500 99.939500 45.939500
binpack1 177.866800 68.866800 74.866800 309.866800 161.866800
binpack2 331.513500 132.513300 140.513300 647.513400 320.513500
binpack3 613.293200 227.293200 242.293200 1287.293300 601.293200
binpack4 1166.872900 406.873400 429.873400 2547.873500 1153.872900
binpack5 20.0 0.0 0.0 0.0 0.0
binpack6 20.0 0.0 0.0 0.0 0.0
binpack7 20.0 0.0 0.0 0.0 0.0
binpack8 20.0 0.0 0.0 0.0 0.0
hard28 84.615000 29.615000 29.615000 789.615000 58.615000

Table 2.3: Results obtained using the Fitness Function 2.7 and the online classic
heustics

The online classic heuristics were used with the Fitness Functions 2.7 and was ap-
plied to solve the Test Instances shown in Section 2.2. The results shown in this
table are the total from the results from each instance set.

Instance AWF BF FF NF WF

bin1data 67.596600 44.561000 44.562400 110.053900 47.654000
bin2data 67.596600 44.561000 44.562400 110.053900 47.654000
bin3data 1.518900 1.390200 1.390200 2.699700 1.397100
binpack1 5.365600 2.425800 2.604700 7.940900 5.089700
binpack2 4.992200 2.259100 2.397000 7.989200 4.916400
binpack3 4.769700 2.014500 2.133300 7.994800 4.726000
binpack4 4.622200 1.838700 1.935800 7.961100 4.597400
binpack5 1.324500 0.0 0.0 0.0 0.0
binpack6 0.682100 0.0 0.0 0.0 0.0
binpack7 0.335000 0.0 0.0 0.0 0.0
binpack8 0.167100 0.0 0.0 0.0 0.0
hard28 1.927800 0.655500 0.655300 13.133100 1.547100

Table 2.4: Results obtained using the Fitness Function 2.8 and the online classic
heustics

The online classic heuristics were used with the Fitness Functions 2.8 and was ap-
plied to solve the Test Instances shown in Section 2.2. The results shown in this
table are the total from the results from each instance set.
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Instance AWF BF FF NF WF

bin1data 21446 20994 20994 23615 21030
bin2data 21446 20994 20994 23615 21030
bin3data 603 596 596 650 596
binpack1 1016 995 995 1372 1003
binpack2 2087 2062 2062 2851 2068
binpack3 4100 4078 4078 5647 4085
binpack4 8141 8108 8108 11253 8123
binpack5 479 464 464 491 464
binpack6 936 916 916 971 916
binpack7 1919 1900 1900 2002 1900
binpack8 3823 3801 3801 4024 3801
hard28 2050 1995 1995 2755 2024

Table 2.5: Results obtained using the Fitness Function 2.6 and the offline classic
heustics

The offline classic heuristics were used with the Fitness Functions 2.6 and was ap-
plied to solve the Test Instances shown in Section 2.2. The results shown in this
table are the total from the results from each instance set.

Instance AWF BF FF NF WF

bin1data 1480.476800 1028.477500 1028.477500 3649.477500 1064.477300
bin2data 1480.476800 1028.477500 1028.477500 3649.477500 1064.477300
bin3data 52.939500 45.939500 45.939500 99.939500 45.939500
binpack1 46.866800 25.866800 25.866800 402.866800 33.866800
binpack2 65.513300 40.513300 40.513300 829.513400 46.513300
binpack3 87.293200 65.293200 65.293200 1634.293100 72.293200
binpack4 140.873300 107.873300 107.873300 3252.873300 122.873300
binpack5 79.000000 64.000000 64.000000 91.000000 64.000000
binpack6 136.000000 116.000000 116.000000 171.000000 116.000000
binpack7 259.000000 240.000000 240.000000 342.000000 240.000000
binpack8 483.000000 461.000000 461.000000 684.000000 461.000000
hard28 84.615000 29.615000 29.615000 789.615000 58.615000

Table 2.6: Results obtained using the Fitness Function 2.7 and the offline classic
heustics

The offline classic heuristics were used with the Fitness Functions 2.7 and was ap-
plied to solve the Test Instances shown in Section 2.2. The results shown in this
table are the total from the results from each instance set.
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Instance AWF BF FF NF WF

bin1data 67.596600 44.561000 44.562400 110.053900 47.654000
bin2data 67.596600 44.561000 44.562400 110.053900 47.654000
bin3data 1.518900 1.390200 1.390200 2.699700 1.397100
binpack1 1.479100 0.913900 0.914100 9.504500 1.233400
binpack2 1.043300 0.705900 0.705900 9.459500 0.846500
binpack3 0.746900 0.591600 0.591600 9.412300 0.666500
binpack4 0.622100 0.495700 0.495700 9.404300 0.572300
binpack5 5.453600 4.830800 4.830800 6.420600 4.848600
binpack6 4.993900 4.553700 4.553700 6.197900 4.557000
binpack7 4.775800 4.557000 4.557000 6.078700 4.558700
binpack8 4.527700 4.400500 4.400500 6.059600 4.400700
hard28 1.927800 0.655500 0.655300 13.133100 1.547100

Table 2.7: Results obtained using the Fitness Function 2.8 and the offline classic
heustics

The offline classic heuristics were used with the Fitness Functions 2.8 and was ap-
plied to solve the Test Instances shown in Section 2.2. The results shown in this
table are the total from the results from each instance set.
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Metaheuristics

3.1 Introduction

3.2 Genetic Programming

Genetic Programming (GP) [25, 26, 27, 28] is an evolutionary computation technique

that was devised in order to generate programs. It uses a similar concept to Genetic

Algorithms (GA) but there are notable differences, particularly what represents each

chromosome in genetic algorithms each chromosome represents a possible solution

to a problem while on the Genetic Programming each chromosome represents a

program or a way to solving a problem.

This metaheuristics became popular in 1992 when John Koza made the publi-

cation of his book [26] however there was a history of GP [27] but still did not take

the name. The representation by trees was suggested by Cramer [29] and Koza [25]

while early work using Lisp and Prolog.

Each node returns its value to its parent node in the usual way the leaf nodes

are the input variables that provide information on the status of the problem or

are numerical constants, while other nodes or internal nodes running operations leaf

nodes (also considered functions).

17
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3.2.1 Genetic Operators

GP have three basic operators which modify the population to generate the next

generation, these are: cross, mutation and reproduction, originally in the work of

Koza [26] mutation operator is not included yet but with the research has been seen

that the mutation may help in the search process and for this reason is included as

a standard operator Genetic Programming.

Cross

Standard the operator requires crossing two parents and generates from them two

children. A node is chosen at random from each of the parents and are exchanged

between parents to generate two sons that are passed to the next generation. Koza

suggests choosing an internal node 90% of the time and a leaf node at 10% to make

the crosses to generate more complex trees.

Mutation

Mutation operator requires only one parent and produces one child. The node

is chosen randomly and a tree is generated at that node. Mutation is a way to

diversify the population and help out a local optimum.

Reproduction

The reproduction operator copies a parent exactly one child.
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Figure 3.1: GP cross’s example

Figure 3.2: GP mutation’s example
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3.3 Grammatical Evolution

Grammatical Evolution (GE) [30] is a grammar-based form of Genetic Programming

(GP) [31]. GE joins the principles of molecular biology, which are used by GP,

and the power of formal grammars. Unlike GP, GE adopts a population of lineal

genotypic integer strings, or binary strings, witch are transformed into functional

phenotypic through a genotype-to-phenotype mapping process [32], this process is

also know as Indirect Representation [33]. The genotype strings evolve with no

knowledge of their phenotypic equivalent, only using the fitness measure.

The transformation is governed through a Backus Naur Form grammar (BNF),

which is made up of the tuple N, T, P, S; where N is the set of all non-terminal

symbols, T is the set of terminals, P is the set of production rules that map N → T ,

and S is the initial start symbol where S ∈ N . There are a number of production

rules that can be applied to a non-terminal, an “|” (or) symbol separates the options.

Even though the GE uses the Genetic Algorithm (GA) [30, 32, 34] as a search

strategy it is possible to use another search strategy like the Particle Swarm Opti-

mization, called Grammatical Swarm (GS ) [35].

In GE each individual is mapped into a program using the BNF, using (3.1)

proposed in [32] to choose the next production based-on the non-terminal symbol.

An example of the mapping process employed by GE is shown in Figure 3.3.

Rule = c%r (3.1)

where c is the codon value and r is the number of production rules available for the

current non-terminal.

The GE can use different search strategies; our proposed model is shown in

Figure 3.4. This model includes the problem instance and the search strategy as an

input. In [32] the search strategy is part of the process, however it can be seen as
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Figure 3.3: GE’s mapping process

An example of a transformation from genotype to phenotype using a BNF Grammar.
It begins with the start symbol, if the production rule for this symbol is only one rule,
then the production rule replaces the start symbol, and the process begins choosing
the production rules based on the current genotype. It takes each genotype and the
non-terminal symbol from the left to perform the next production using (3.1) until
all the genotypes are mapped or there aren’t more non-terminals in the phenotype.
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an additional element that can be chosen to work with GE. The GE will generate a

solution through the search strategy selected and it will be evaluated in the objective

function using the problem instance.

Figure 3.4: GE’s methodology

GE’s methodology used in the present work, this methodology can be used with
different search strategies.

3.3.1 Differential Evolution

Differential Evolution (DE) [36] was developed by R. Storn and K. Price in 1996.

It is a vector-based evolutionary algorithm, and it can be considered as a further

development to Genetic Algorithm (GA) [34]. It is a stochastic search algorithm

with self-organizing tendency and does not use the information of derivatives[37].

For a d-dimensional problem with d parameters, a population of n solution are

initially generated, so we have xi solution vectors where i = 1, 2, . . . , n. For each

solution xi at any generation t we use the conventional notation as:

xti = (xt1, x
t
2, . . . , x

t
d) (3.2)

which consist of d-components in the d-dimensional space. This vector can be

considered as the chromosomes or genomes.
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This metaheuristic consists of three main steps: mutations, crossover and selec-

tion.

Mutation is carried out by the mutation scheme. For each vector xi at any time

or generation t, first randomly choose three distinct vector xp, xq and xr at t, and

then generate a so-called donor vector by the mutation scheme.

vt+1
i = xtp + F (xtq − xtr) (3.3)

where F ∈ [0, 2] is a parameter, often refered to as the scale factor. This re-

quires that the minimum number of population size is n ≥ 4. We can see that the

perturbation δ = F (xq − xr) to the vector xp is used to generate a donor vector vi,

and such perturbation is directed and self-organized.

The crossover is controlled by a probability Cr ∈ [0, 1] and actual crossover can be

carried out in two ways: binomial and exponential. The binomial scheme performs

crossover on each of the d components or variables/parameters. By generating

a uniformly distributed random number ri ∈ [0, 1], the jth components of vi is

manipulated as:

ut+1
j,i =

vtj,i if ri ≤ Cr

xtj,i otherwise
j = 1, 2, ..., d (3.4)

This way, each component can be decided randomly whether to exchange with

donor vector or not.

In the exponential scheme, a segment of the donor vector is selected and this

segment starts with a random k with a random length L which can include many

components. Mathematically, this is to choose k ∈ [0, d−1] and L ∈ [1, d] randomly,

and we have:

ut+1
j,i =

vtj,i vtj,i for j = k, . . . , k − L ∈ [1, d]

xtj,i otherwise
(3.5)
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The binomial crossover, due to its popularity in many DE literatures [36, 38, 39],

is utilized in our implement.

Selection is essentially the same as that used in genetic algorithms. It is to select

the fittest, and for minimization problem, the minimum objective value. Therefore,

we have:

xt+1
i =

ut+1
i if f(ut+1

i ) ≤ f(xti)

xti otherwise
(3.6)

All the above three components can be seen in the pseudo code as shown in

algorithm 3.1. It is worth pointing out there that the use of Jr is to ensure that

vt+1
i 6= xti, which may increase the evolutionary or exploratory efficiency. The overall

search efficiency is controlled by two parameters: the differential weight F and the

crossover probability Cr.

Algorithm 3.1 Differential Evolution Algorithm

Require: F differential weight, Cr crossover probability, n population size
1: Initializate the initial population.
2: while stopping criterion not met do
3: for i = 1 to n do
4: For each xi randomly choose 3 distinct vector xp, xq and xr.
5: Generate a new vector v by DE scheme (3.3).
6: Generate a random index Jr ∈ {1, 2, . . . , d} by permutation.
7: Generate a randomly distributed number ri ∈ [0, 1]
8: for j = 1 to n do
9: For each parameter vj,i (jth component of vi), update

10: ut+1
j,i =

{
vt+1
j,i if ri ≤ Cr or j = Jr
xtj,i if ri > Cr or j 6= Jr

11: end for
12: Select and update the solution by (3.6).
13: end for
14: Update the counters such as t = t+ 1
15: end while

In [40] five strategies are shown to mutate the v vector:

a) DE/rand/1: Vi = Xr1 + F (Xr2 −Xr3).
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b) DE/best/1: Vi = Xbest + F (Xr1 −Xr2).

c) DE/curren to to best/1: Vi = Xi + F (Xbest −Xi) + F (Xr1 −Xr2).

d) DE/best/2: Vi = Xbest + F (Xr1 −Xr2) + F (Xr3 −Xr4).

e) DE/rand/2: Vi = Xr1 + F (Xr2 −Xr3) + F (Xr4 −Xr5).

where: r1, r2, r3, r4 are random and mutually different indices, witch should also

be different from the trial vector’s index i and Xbest is the individual vector with

best fitness.

3.3.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) [41, 42, 43, 44, 45] is a metaheuristic Bio-

inspired in the flocks of birds or schools of fish. It was developed by J. Kennedy

and R. Eberthart based on a concept called social metaphor. This metaheuristic

simulates a society where all individuals contribute with their knowledge to obtain

a better solution. There are three factors that influence the change of status or

behavior of an individual:

a) The knowledge of the environment or adaptation: it is related to the impor-

tance given to the experience of the individual.

b) His Experience or local memory: is related to the importance given to the best

result found by the individual.

c) The Experience of their neighbors or Global memory: this is related to how

important is the best result obtained by their neighbors or other individuals.

In this metaheuristic each individual is considered as a particle, and moves through

a multidimensional space that represents the social space, the search space depends
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on the dimension of space which in turn depends on the variables used to represent

the problem.

For the update of each particle we use the velocity vector which tells how fast

the particle will move in each of the dimensions, the method for updating the speed

of PSO is given by equation (3.7), and its position is updated by equation (3.8).

Algorithm 3.2 shows the complete PSO algorithm.

vi = wvi + φ1 (xi −Bglobal) + φ2 (xi −Blocal) (3.7)

xi = xi + vi (3.8)

where:

a) vi is the velocity of the i-th particle.

b) w is adjustment factor to the environment.

c) φ1is the memory coefficient in the neighborhood.

d) φ2 is the coefficient memory.

e) xi is the position of the i-th particle.

f ) Bglobal is the best position found so far by all particles.

g) Blocal is the best position found by the i-th particle
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Algorithm 3.2 Particle Swarm Optimization Algorithm

Require: w adaptation to environment coefficient, φ1 neighborhood memory coef-
ficient, φ2 memory coefficient, n swarm size.

1: Start the swarm particles.
2: Start the velocity vector for each particle in the swarm.
3: while stopping criterion not met do
4: for i = 1 to n do
5: If the i-particle’s fitness is better than the local best then replace the local

best with the i-particle.
6: If the i-particle’s fitness is better than the global best then replace the global

best with the i-particle.
7: Update the velocity vector by (3.7).
8: Update the particle’s position with the velocity vector by (3.8).
9: end for

10: end while

3.3.3 Particle Evolutionary Swarm Optimization

Particle Evolutionary Swarm Optimization (PESO) [46, 47, 48] is based on PSO but

introduces two perturbations in order to avoid two problems observed in PSO [49]:

a) Premature convergence.

b) Poor diversity.

Algorithm 3.3 shows the PESO Algorithm with two perturbations, Algorithms 3.4

and 3.5. The C-Perturbation has the advantage of keeping the self-organization

potential of the flock as no separate probability distribution needs to be computed

meanwhile the M-Perturbation helps keeping diversity into the population.
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Algorithm 3.3 Particle Evolutionary Swarm Optimization Algorithm

Require: w adaptation to environment coefficient, φ1 neighborhood memory coef-
ficient, φ2 memory coefficient, n swarm size.

1: Start the swarm particles.
2: Start the velocity vector for each particle in the swarm.
3: while stopping criterion not met do
4: for i = 1 to n do
5: If the i-particle’s fitness is better than the local best then replace the local

best with the i-particle.
6: If the i-particle’s fitness is better than the global best then replace the global

best with the i-particle.
7: Update the velocity vector by (3.7).
8: Update the particle’s position with the velocity vector by (3.8).
9: Apply the C-Perturbation.

10: Apply the M-Perturbation.
11: end for
12: end while

Algorithm 3.4 C-Perturbation

1: for all Particles do
2: Generate r uniformly between 0 and 1.
3: Generate p1, p2 and p3 as random numbers between 1 and the number of

particles.
4: Generate the i-new particle using the following equation and applying it to

each particle dimension: newi = p1 + r (p2− p3).
5: end for
6: for all Particles do
7: If the i-new particle is better that the i-particle then replace the i-particle

with the i-new particle.
8: end for
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Algorithm 3.5 M-Perturbation

1: for all Particles do
2: for all Dimension do
3: Generate r uniformly between 0 and 1.
4: if r ≤ 1/dimension then
5: newid = random(LowerBound, UpperBound)
6: else
7: newid = Particled
8: end if
9: end for

10: end for
11: for all Particles do
12: If the i-new particle is better that the i-particle then replace the i-particle

with the i-new particle.
13: end for

3.3.4 Bee Swarm Optimization

Bee Swarm Optimization (BSO) [50, 51] is an hybrid metaheuristic based on Particle

Swarm Optimization [41] and the Bee Algorithm (BA) [52]. The BSO uses the PSO

and BA elements to try to avoid the problems observed in PSO. The premature

convergence is avoided through the radius search and the poor diversity with the

scout bees.

The BSO core is the PSO with its equations; speed equation (3.7) and updating

equation (3.8). After this is applies the exploration and a search radius from the

BA to explore and exploiting. The search radius is based on binary operations,

adding and subtracting the radius number to the solution vector as shown in the

Figure 3.5. Algorithm 3.6 shows the BSO algorithm used.
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Figure 3.5: Example of search radius based on binary operations.

Algorithm 3.6 Bee Swarm Optimization Algorithm

Require: w adaptation to environment coefficient, φ1 neighborhood memory co-
efficient, φ2 memory coefficient, n swarm size, sb scout bees, r search radius.

1: Start the bee swarm.
2: Start the velocity vector for each bee in the swarm.
3: while stopping criterion not met do
4: for i = 1 to n do
5: If the i-bee’s fitness is better than the local best then replace the local best

with the i-bee.
6: If the i-bee’s fitness is better than the global best then replace the global

best with the i-bee.
7: Update the velocity vector by (3.7).
8: Update the bee’s position with the velocity vector by (3.8).
9: Apply the search radius r to the local best bee.

10: end for
11: Restart the worst sb bees.
12: end while
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3.3.5 Compact Genetic Algorithm

Compact Genetic Algorithm (cGA) [53, 54, 55] is an improvement over Genetic Al-

gorithm (GA), it was proposed by Harik. Harik analyzed the GA and he treated to

model statistically the selection and mutation operators. cGA starts with a probabil-

ity of 0.5 for each dimension, know as probability vector. cGA isn’t a metaheuristic

based on population, due the evolution is made adjusting the probability vector.

The cGA can simulate a GA with a given population. The cGA algorithm is

shown in Algorithm 3.7.

Algorithm 3.7 Compact Genetic Algorithm

Require: l chromosome length, n population size
1: Initializate the probability vector.
2: while stopping criterion not met do
3: Generate two individuals from the probability vector
4: Obtain the Winner and Loser betwen the two individuals
5: Update the probability vector
6: for i = 1 to l do
7: if Winneri = Loseri then
8: if Winneri = 1 then
9: pi = pi + 1

n

10: else
11: pi = pi − 1

n

12: end if
13: end if
14: Check
15: end for
16: end while

3.3.6 Univariate Marginal Distribution Algorithm

Univariate Marginal Distribution Algorithm (UMDA) [56, 57, 58] is a basic Estima-

tion of Distribution Algorithms (EDA). The UMDA uses a simple model to estimate

the joint probability distribution of the selected individuals at each generation, that

model is the product of independent univariate marginal distributions as seen in
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Equation 3.9. Each univariate marginal distribution is estimated from marginal fre-

quencies using the Equation 3.10. The UMDA’s algorithm is shown in Algorithm

3.8.

pl (x) = pl
(
x|DSe

l−1

)
=

n∏
i=1

pl (xi) (3.9)

pl (xi) =

∑n
j=1 δj

(
Xi = xi|DSe

l−1

)
N

(3.10)

where:

a) DSe
l−1 is the selected population according to the selection method.

b) δj
(
Xi = xi|DSe

l−1

)
=

1 if in the jth case of DSe
l−1, Xi = xi

0 otherwise

Algorithm 3.8 Univariate Marginal Distribution Algorithm

Require: l chromosome length, n population size, m individuals to be selected.
1: Initializate the initial population randomly.
2: while stopping criterion not met do
3: Select m individuals according to the selection method.
4: Estimate the join probability distribution.
5: Sample the new population.
6: end while
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Hyper-Heuristics

4.1 Introduction

Hyper-heuristics (HH) can be defined as heuristics that search a space of heuristics,

as opposed to searching a space of solutions directly [59]. The term Hyper-Heuristics

is relatively new, however the basic idea has been around since the 1960’s. For

example, in 1961 (and again in 1963), in [60, 61] is presented an algorithm which

combines local job shop scheduling rules using a probabilistic learning technique.

This can be classed as a HH because the learning algorithm chooses which of two

heuristics to apply, and the chosen heuristic then selects the next job for the machine.

Research in this area is motivated by the goal of raising the level of generality

at which optimization systems can operate [62], and by the assertion that in many

real-world problem domains, there are users who are interested in good-enough,

soon-enough, cheap-enough solutions to their search problems, rather than optimal

solutions [62]. In practice, this means researching systems that are capable of oper-

ating over a range of different problem instances and sometimes even across problem

domains, without expensive manual parameter tuning, and while still maintaining

a certain level of solution quality.

The No Free Lunch theorem [63, 64] shows that all search algorithms have the

33
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same average performance over all possible discrete functions. This would suggest

that it is not possible to develop a general search methodology for all optimization

problems as, over all possible discrete functions, no heuristic search algorithm is bet-

ter than random enumeration [63]. However, it is important to recognise that this

theorem is not saying that it is not possible to build search methodologies which

are more general than is currently possible. Often the algorithms are developed

for a narrower set of problems within that group like for instance university course

timetabling [65, 59], exam timetabling problems [66], or bin packing problems [18].

Indeed, algorithms can be specialised further by developing them for a specific prob-

lem. At each of these levels, the use of domain knowledge can allow the algorithms

to exploit the structure of the set of problems in question. This information can be

used to intelligently guide a heuristic search.

In the majority of cases, humans develop heuristics which exploit certain features

of a problem domain, and this allows the heuristics to perform better on average

than random search. HH research is concerned with building systems which can

automatically exploit the structure of a problem they are presented with, and cre-

ate new heuristics for that problem, or intelligently choose from a set of pre-defined

heuristics. In other words, HH research aims to automate the heuristic design pro-

cess, or automate the decision of which heuristics to employ for a new problem.

The advantage of an automated heuristic design process, is in making optimiza-

tion tools and decision support available to organisations who currently solve their

problems by hand, without the aid of computers. HH research aims to address

the needs of organisations interested in good-enough soon-enough cheap-enough so-

lutions to their optimization problems [67]. Note that good enough often means

solutions better than they currently obtain by hand, soon enough typically means

solutions delivered at least as quick as those obtained by hand, and cheap enough

usually means the cost of the system is low enough that its solutions add value to

the organisation.
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4.2 Heuristic Selection

In the majority of previous work, the HH is provided with a set of human created

heuristics. These are often heuristics taken from the art-state, that have been shown

to perform well. When using this type of HH approach, the HH is used to choose

which heuristic, or sequence of heuristics, to apply, depending on the current problem

state.

On a given problem instance, the performance of existing heuristics varies.

Therefore, it is difficult to determine which single heuristic will obtain the best

result. When using a HH approach, the strengths of the individual heuristics can

potentially be automatically combined. However, for such an approach to be worth-

while, the combination should outperform all the constituent heuristics [68]. An

optimization system which intelligently chooses heuristics for the problem at hand

can be said to operate at a higher level of generality than the individual heuristics.

This is because the system can potentially be applied to many different instances of

a problem, and maintain its performance.

A possible HH framework is used in [67, 69, 70, 71, 72, 73] . This is shown in

Figure 4.1 [74], and has a domain barrier between the domain specific heuristics and

the HH. This points out the difference in the responsibilities in the model, between

the HH and the domain specific heuristics. The HH maintains only knowledge of

how many heuristics it has to call upon, and the results of the evaluation of the

solutions they obtain.

This idea enabled a tabu-search HH to be applied to the two very different

domains of nurse scheduling and university course timetabling in [75]. Different sets

of local search heuristics were used for each of the two problems, but the HH was

left unchanged. The HH maintains a ranking of its low level heuristics based on

their performance, and applies the one with the highest rank at each decision point.

If a heuristic is applied and does not result in a better solution, it is placed in the
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Figure 4.1: Hyper-Heuristic domain barrier

tabu list and therefore is subsequently not used for a number of iterations. The tabu

search HH receives no information about the domain in which it is operating. A

domain barrier thus makes it possible to apply a HH to a different problem domain

without requiring modification. Similar work on a tabu search HH was presented by

Kendall and Mohd Hussin [76]. An improved version of this algorithm is outlined in

[77], and tested on a real world timetabling problem from the University Technology

MARA.

Another example of a HH that maintains a domain barrier is the choice function

HH [69, 73]. At each decision point, the choice function evaluates the domain

specific heuristics and chooses the best one [69]. The choice function has three

terms. The first is a measure of the recent effectiveness of the heuristic, the second

is a measure of the recent effectiveness of pairs of heuristics, and the third measures

the time since the heuristic was last called. These three terms represent a trade-off

between exploration and exploitation, they make it more likely for good heuristics

to be used more frequently, but the third term adds the possibility of diversification.

Good results are obtained over the domains of sales summit scheduling, presentation
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scheduling, and nurse scheduling. Applying the choice function on parallel hardware

is investigated in [78].

While the domain barrier has been implemented in the framework above, it is

not a defining feature of a HH. A HH may or may not be domain specific. Often the

HH receives little or no information about the problem domain, but it does receive

information about the performance of the heuristics being applied. The heuristics

must be domain specific because they must operate on instances of the problem

domain to obtain a solution.

Many existing metaheuristics have been employed successfully as HHs. Both

a genetic algorithm and a learning classifier system have been applied to the one-

dimensional bin packing problem. The learning classifier system HH [79] selects

between eight heuristics every time a piece is to be packed. The percentage of

pieces left in four different size ranges is calculated, in addition to the percentage of

pieces left in relation to the total number of pieces. The problem state is represented

as these two features, which are then compared to a set of rules determining which

heuristic will be used to pack the next item. This method learns which heuristics

should be used when different features are present. Subsequent work evolves similar

rule sets using a genetic algorithm HH [68]. This work shows that it is not only

a learning classifier system which can generate rules, and that good results can be

obtained by assigning reward to rule sets only when the final outcome of the packing

is known. Terashima-maŕın et al. extend this approach onto the two dimensional

stock cutting problem by applying a highly similar learning classifier system [80], and

genetic algorithm [81]. A comparison of the two HHs for this problem is subsequently

given in [82].

Work on a genetic algorithm HH for a trainer scheduling problem is presented in

[72, 83, 84, 85]. In this problem, geographically distributed courses are to be sched-

uled over a period of several weeks, and the courses are to be delivered by a number

of geographically distributed trainers [72]. The genetic algorithm chromosome is a
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sequence of integers that each represent a heuristic. The work is further extended

in [72] to incorporate an adaptive length chromosome, so that the length of the

sequence of heuristic calls can be modified. Then the results are further improved

in [83] by better directing the genetic algorithm in its choice of whether to add

or remove genes. A tabu method is added to the genetic algorithm in [84], which

means genes are no longer physically added or removed. Instead, they are not used

for a number of generations if they do not produce an improvement in the objective

function.

An ant algorithm HH is used in [86] for the project presentation scheduling

problem. A standard ant algorithm is applied to a search space of heuristics by

representing each heuristic as a node in a graph, where an edge between two nodes

means one can be applied after the other. The ants traverse the graph, each produc-

ing a solution using the heuristic associated with each node they travel through. An

ant lays pheromone on the path it took after a full solution has been constructed,

in proportion to the quality of the solution. Thus, the good sequences of heuristics

become reinforced. Another ant algorithm HH is presented in [87]. The ant colony

algorithm optimises a sequence of five heuristics, each with five parameters. Results

are obtained on the two dimensional bin packing problem, making them relevant

to the work in this thesis. In their earlier work, Cuesta-Canada et al. employ the

term HH to refer to the set of five heuristics, rather than to the ant algorithm which

searches the space of these heuristics.

Simulated annealing is employed as a HH in [88] for the shipper rationalisation

problem, determining space-efficient sizes for reusable containers. The simulated

annealing algorithm is based on the tabu search HH presented in [75], with the

difference that once the heuristic is selected by the tabu search, the move it generates

is accepted according to the simulated annealing algorithm. A simulated annealing

HH is also employed in [89] to automate the design of planograms, which are the

two dimensional diagrams used to plan shelf space allocation. Greedy and choice
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function HHs are also investigated in this paper but the simulated annealing had

superior performance. Bai et al. present further work inspired by a real world

problem in [90], where a collaboration with Tesco informs a study on fresh produce

inventory control. Three HHs are implemented for this problem, including the tabu

search simulated annealing HH previously presented in [88], and in addition to this,

metaheuristic and heuristic approaches are also compared. Issues of memory length

in a simulated annealing HH are addressed in [91].

The set of domain specific heuristics that the traditional HH chooses between

are usually a combination of mutational and hill climbing heuristics. Including

heuristics from these two classes means that the search can explore new areas of

the search space, and also exploit good areas. Work by Ozcan et al. in [92] ex-

plores three different frameworks, which aim to better make use of the strengths of

both classes of heuristic. In the first framework, if the HH chooses a mutational

heuristic, a hill climbing heuristic is applied immediately afterwards to exploit the

diversification before the next heuristic is chosen. In the second framework, only

mutational heuristics are available to the HH, and a single hill climbing heuristic is

applied immediately after a mutational heuristic is applied, this framework is sim-

ilar to a memetic algorithm. The third framework completely separates the sets of

mutational and hill climbing heuristics. At each step, the HH chooses and applies a

mutational heuristic, and then chooses and applies a hill climbing heuristic.

A HH for timetabling problems is presented in [93], using a tabu search to find

a sequence of simple graph colouring heuristics to solve the problem. A genetic

algorithm HH is used in [94] for the examination timetabling problem. Using a

direct encoding of the problem has been found to be restrictive. For this reason,

the genetic algorithm chromosome encodes instructions and parameters for guiding

a search algorithm, rather than encoding a particular solution. An example of the

limitations of a particular direct representation can be found in [95].

Bilgin et al. investigate combinations of seven heuristic selection mechanisms and
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five move acceptance criteria [96], and the results are also tested on examination

timetabling benchmarks. This work shows that many HHs in the literature can be

viewed as a combination of one heuristic selection mechanism and one acceptance

criteria, and that a different combination of these components can be classed as a

different HH. Ersoy et al. present similar work using a HH to choose between hill

climbers in a memetic algorithm [97]. This, again, shows that a HH can be used

to optimise a component of an existing metaheuristic algorithm, not just to choose

between fixed algorithms.

Two genetic algorithm HH strategies are analysed for the job shop scheduling

problem in [98]. One strategy evolves the choice of which priority rule from twelve

to use for conflict resolution at a given iteration. The other evolves the sequence

in which the machines are considered by a shifting bottleneck heuristic. This can

be called a HH because the space of ordering heuristics is searched for one which

minimises the makespan. Storer et al. present work which is highly relevant to

hyper-heuristic research, also on the job shop scheduling problem. They state,

Search spaces can also be generated by defining a space of heuristics [99], which is a

fundamental principle of HH research. Specifically, they do this by parameterising

existing heuristics and searching the space of parameters. Their subsequent research

on how to successfully search such a space is presented in [100].

Hart and Ross have also developed a HH approach for the job shop scheduling

problem [101]. They use a genetic algorithm, where each gene represents a combi-

nation of scheduling algorithm and heuristic. The scheduling algorithm generates

a set of schedulable operations, and the heuristic determines which among those

will be chosen. Zhang and Dietterich use reinforcement learning to learn heuristics

for the job shop problem, and their approach is tested on a NASA space shuttle

payload processing problem, as well as an artificial problem set. Fang et al. present

a genetic algorithm for the job shop scheduling problem, which can be labelled a

HH as the genome represents an ordering of the jobs [33]. A subsequent proposed
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extension to the open shop scheduling problem, in the same paper, involves the

genome representing an ordering of both the jobs and the specific tasks that they

consist of. They later present the results of this extension in [102]. This paper

further expands the HH theme of the work, by encoding into the genome the choice

of heuristic that is used to schedule each specific task. In the previous work, a fixed

heuristic was used and only the ordering was evolved. The chromosome encodes

pairs of values representing which heuristic from eight to apply to which remaining

job. The heuristic chooses an operation from the job and places it at the earliest

time available in the solution.

Cowling and Chakhlevitch [103] state that the performance of a HH relies very

much on the choice of low level heuristics. They address the question of how the set

of low level heuristics should be designed. Related to this, is the problem of ensuring

that the set of low level heuristics is varied enough to ensure an efficient search, but

not so large that it contains heuristics that are not necessary. Further work by the

same authors addresses this problem, by introducing learning mechanisms into a

HH to avoid using heuristics which do not make valuable contributions [104]. This

reduces computational effort, because the under performing heuristics do not then

slow the search down.

A case based reasoning HH is presented in [67] for the course timetabling prob-

lem, and then again in [105], where it is shown that the HH can operate over both

the exam timetabling and the course timetabling domains. This HH works by com-

paring the current problem to problems encountered before, and applying the same

heuristics that have worked well in similar situations. Tabu search is employed in

[106] to search for the best combination of two well known graph based heuristics

for constructing exam timetabling solutions. The tabu search mechanism is based

on that presented in [75]. The knowledge gained from this HH is then used to in-

form two hybrid graph based approaches to the same problem, one which inserts a

certain percentage of one heuris- tic into the heuristic list, and one in which case
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based reasoning remembers heuristics that have been successfully used on similar

partial solutions.

Highly related to the case based reasoning approach is the COMPOSER algo-

rithm [107]. COMPOSER essentially consists of a set of condition-action rules which

are learned while working through a representative training set [107]. This algorithm

is applied to deep space network scheduling in [108, 109]. The algorithm developed

by Fink [110] chooses among three solution methods which apply heuristics in differ-

ent ways, and is inspired by the PRODIGY architecture that COMPOSER utilises.

The solution methods are chosen based on a statistical analysis of their past per-

formance. This is different to case based reasoning, as it does not rely on any prior

knowledge of a particular problem domain. This approach focuses on selecting a

method to be used throughout the whole search, with no opportunity for switching

methods while the search is performed.

Pisinger and Ropke present a HH that can operate over five different variants

of the vehicle routing problem [111]. The approach employs adaptive large neigh-

bourhood search, a method which selects a heuristic to destroy part of the solution

and a heuristic to rebuild it. Adaptive large neighbourhood search is a paradigm

rather than a specific algorithm, it requires an acceptance criteria to be specified as

well as the heuristics which drastically modify the solution. The acceptance criteria

used in this paper is simulated annealing, but any metaheuristic could be used. The

paradigm has similarities to variable neighbourhood search [112], which can also

be considered a HH. This is because adaptively changing the neighbourhood of the

search can be seen as intelligently selecting an appropriate heuristic.

Wah presents a population based method of learning by examples [113], to create

new heuristics. This work led to the development of the TEACHER (TEchniques

for the Automated Creation of HEuRistics) learning system, which uses similar

genetics based learning to design heuristics [114, 115, 116]. The system is for use in

knowledge lean environments, and as such is highly related to the work presented
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here. An important part of the system is the partitioning of the problem domain

into subclasses before creating a heuristic for each. This relates directly to results

in this thesis, which show that it is beneficial to evolve a heuristic on a subclass of

problems, representative of those on which it will be used in the future. In [114],

the system is applied to improve two circuit testing solvers, and more examples of

TEACHER applications are given in [117, 114, 118].

The concept of a heuristic to choose heuristics is closely related to the concept

of multimeme algorithms [119]. In a memetic algorithm, a meme represents a local

search heuristic or some other move operator. The results in [119] show the benefits

of using more than one meme when performing a search. This can also be thought

of as a HH employing a number of low level heuristics during a search.

4.3 Heuristic Generation

Less well studied in the literature is the class of HHs which aim to create a heuristic

from a set of potential components. This is distinct from the previous section,

in which the HH is given a set of complete functioning heuristics, and must then

choose between them. The created heuristic may be ‘disposable’ in the sense that

it is created just for one problem instance, and is not intended for use on unseen

instances. Alternatively the heuristic may be created for the purpose of reusing it

on new unseen instances of a certain problem class.

There are a number of potential advantages of this approach. Every problem

instance is different, and obtaining the best possible result for an instance would

ideally require a new heuristic or a variation of a previously created heuristic. It

would be inefficient for a human analyst to create a new heuristic for every problem

instance. Human created heuristics are rarely applicable to only one problem in-

stance, they are usually created for a class of instances, or for all problem instances.

For example, best-fit is a human created heuristic for one dimensional bin packing
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Figure 4.2: Hyper-Heuristic domain barrier used to generate heuristics

[120], and performs well on a wide range of bin packing instances. Indeed, it was

created as a general heuristic for any bin packing instance. Over a narrower set

of instances however, with piece sizes defined over a certain distribution, best-fit

can be outperformed by heuristics which are tailored to the distribution of piece

sizes [121]. Poli, Woodward and Burke [122] also employ genetic programming

to evolve heuristics for bin packing. The structure within which their heuristics

operate is based on matching the piece size histogram to the bin gap histogram, and

is motivated by the observation that space is wasted when placing a piece in a bin

leaves a smaller available space than the size of the smallest piece still to be packed.

Their work also differs from that presented in this thesis because they use linear

genetic programming, and the problem addressed is offline bin packing rather than

online. However, the motivation for the work is the same, to automate the process

of designing heuristics for bin packing.

If the heuristic design process is automated, a computer system could produce a

good quality heuristic for an instance in a practical amount of time. This heuristic

could even produce a solution that may be better than that which can be obtained
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by any current human created heuristic. This is because it would have been created

specifically for that instance rather than as a general heuristic. Automating the

heuristic design process offers the chance to easily, and flexibly, specify the range of

instances that a heuristic will be applicable to, and then obtain that heuristic with

minimal human effort spent in the process.

A good heuristic for a given problem instance may be counterintuitive, especially

if the instance is complex. Another advantage of automated heuristic design, there-

fore, is that a heuristic may be created which performs well on the instance, but

was unlikely to have been created by a human analyst.

Fukunaga presents an automated heuristic discovery system, for the SAT prob-

lem, in [123, 124]. The most successful heuristics for SAT can be expressed as

different combinations of a particular set of components. It is stated that human

researchers are particularly good at identifying good components, but the process

of combining them could benefit from automation [123]. The paper uses an evolu-

tionary algorithm to evolve human competitive heuristics consisting of these com-

ponents. Some issues and potential objections from [123]are resolved in [124],by

implementing the system in Lisp for quicker evaluation, and showing that good

heuristics can still be evolved without initialising the population with complex hand

coded heuristics and components.

Bader-El-Din and Poli [125] observe that the approach of Fukunaga results in

heuristics consisting of other nested heuristics. This results in heuristics which are

composites of those in early generations, and which are therefore relatively slow to

execute. Bader-El-Din and Poli present a different heuristic generation methodol-

ogy for SAT, which makes use of traditional crossover and mutation operators to

produce heuristics which are more parsimo- nious, and faster to execute. A gram-

mar is defined, which can express four existing human created heuristics, and allows

significant flexibility to create completely new heuristics. Subsequent research by

the same team of researchers has shown that a HH system can evolve constructive
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heuristics for timetabling problems [126]. The evolved heuristics are not intended

to be reusable, and the system is presented as an online learning method, which can

often obtain better results than other constructive algorithms and HH approaches.

Keller and Poli present a linear genetic programming HH for travelling salesman

problems in [127]. At its simplest level, the system evolves sequences of 2-opt and

3-opt swap heuristics. Then conditional and loop components are added to the

set of components, to add complexity to the evolved heuristics. Work presented

by Ho and Tay in [128, 129], employs genetic programming to evolve composite

dispatching rules for the job shop scheduling problem. The terminals of the genetic

programming algorithm are components of previously published dispatching rules,

and the functions are the arithmetic operators and an automatically defined function

(ADF, see [82]). The evolved dispatching rules are functions, which assign a score

to a job based on the state of the problem. When a machine becomes idle, the

dispatching rule is evaluated once for each job in the machine’s queue, and each

result is assigned to the job as its score. The job in the queue with the highest score

is the next job to be assigned to the machine. Jakobovic et al. employ the same

technique for the parallel machine scheduling problem [130].

Dimopoulos and Zalzala [131] evolve priority dispatching rules for the single

machine scheduling problem, to minimise the total tardiness of jobs. The terminal

set is based on the human designed ‘Montagne’ dispatching rule, and contains five

elements, representing both global and local job information. The function set

consists of the four basic arithmetic operators. While the function and terminal sets

are relatively simple, the system evolves heuristics superior to the Montagne, ADD,

and SPT heuristics. Genetic programming is also used to evolve priority dispatching

rules in [132]. ADFs are not used in this paper, however the function and terminal

sets are expanded from that presented in [131, 128]. Human competitive heuristics

are produced, even for job shop environments with multiple machines, where a

unique dispatching rule is evolved for each.
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Recent work by Kumar et al. presents a genetic programming system which

evolves heuristics for the biobjective knapsack problem [133]. This is the first work

in which heuristics for a multiobjective problem have been automatically generated

with a HH. The technique employs many similar ideas to the bin packing method-

ology presented in this thesis. For example, the terminals used are similar, and the

framework which iterates through the pieces, applying the heuristic to each. Further

work has shown that heuristics can also be generated with genetic programming for

a multiobjective minimum spanning tree problem [134].

Oltean [135] presents a linear genetic programming HH, which generates evolu-

tionary algorithms. A standard individual in a linear genetic program represents

a series of instructions that manipulate values in a memory array. The memory

positions are referred to as registers. Oltean represents an evolutionary algorithm

population as this memory array, with each member of the population stored in one

register. The genetic operators are the instructions that operate on the memory

array. Tavares et al. [136] also present a methodology for evolving an evolutionary

algorithm. They specify the main components of a generic evolutionary algorithm,

including initialisation, selection, and the use of genetic operators. Tavares et al. ex-

plain how each of these steps, can be evolved individually by a genetic programming

HH. They demonstrate the approach through an example of evolving an effective

mapping function of genotype to phenotype, for a function optimization problem.

Pappa and Freitas employ a grammar based genetic programming system to

evolve rule induction algorithms for classification [137]. They show that classifi-

cation algorithms can be automatically specialised to one of two problem classes,

a conclusion which is similar to some of the conclusions of this thesis. Their pa-

per states that automatic generation of algorithms may result in better algorithms

than have currently been designed by hand, which is a common motivation for HH

research. They also assert that such an approach can be cheaper than manual al-

gorithm design. As explained previously in this section, this reduction in cost is
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another reason why HH research is potentially beneficial to smaller organisations.

The literature also shows a link between memetic algorithms and HHs. Krasno-

gor states a definition of a true memetic algorithm as “evolutionary algorithms where

not only the solutions to the problem at hand are evolved but where local searchers

that can further improve the quality of those solutions are coevolved, e.g., by GP,

alongside them” [119]. Further work by Krasnogor and Gustafson has shown that

this is possible, with self generation of memes. For protein structure prediction, a

grammar is defined in [138, 139], which expresses groups of memes, each of which

performs a local search at a given point in the genetic algorithm. All aspects of

the memes are evolved, and the result is a memetic algorithm which is evolved

with genetic programming. This provides the possibility of automatically tuning

the metaheuristic (in this case a memetic algorithm) to any problem instance [139],

and replacing time consuming manual algorithm tuning.



Chapter 5

Evolving Heuristics

5.1 Introduction

This chapter presents the initial work to develop heuristics automatically for the bin

packing problem, is based on [140] where the GP is used to evolve heuristics.

The aims of the present chapter was to investigate if is possible to generate

heuristics using something different to GP and was necessary to obtain at least the

same results obtained by the Genetic Programming. The GE was used and it was

proposed a Grammar based on the elements used by the GP.

The results obtained with the GE, using differents kernels, was compared against

the results obtained by the classical heuristics, shown in Section 2.5 ,by using Fried-

man non-parametric test.

5.2 Methodology

The proposed approach tries to find an heuristic, which is developed through the

evolution of the grammar by GE with Search Engines. It was used the methodology

shown in Figure 5.1, it was generated one heuristic by each instance and the heuristic

components were taken from Table 5.1 to make the Grammar 5.1.
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The Table 5.2 contains the parameters used for each Search Engine. Those

parameters were obtained through a fine tuning parameter using Covery Arrays.

33 experiments were performed independently and the median was used to com-

pare the results against those obtained with the heuristics described in Section

2.5. The comparison was implemented through the non-parametric test of Fried-

man [141, 142] , this non-parametric test used a post-hoc analysis to discern the

performance between the experiments and gives a ranking of them.

The Appendix A includes an Example to pack items based on classic heuristics

and GE.

Figure 5.1: Methodology used to Evolve Heuristics

〈inicio〉 |= (〈expr〉) <= (〈expr〉)
〈expr〉 |= (〈expr〉〈op〉〈expr〉) | 〈var〉 | abs(〈expr2〉)
〈expr2〉 |= (〈expr2〉〈op〉〈expr2〉) | 〈var〉
〈var〉 |= F | C | S

〈op〉 |= + | * | - | /

Grammar 5.1: Grammar based on the Heuristic Components as shown in Table 5.1
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Symbol Arguments Description

Functions

+ 2 Add
- 2 Subtract
* 2 Multiply
/ 2 Divide
≤ 2 Tests if the first argument is less

than or equal to the second argu-
ment.

Terminals
F 0 Returns the sum of the pieces al-

ready in the bin
C 0 Returns the bin capacity
S 0 Returns the size of the current piece

Table 5.1: Heuristic Componets usign by GP

Parameter DE PESO PSO UMDA
Functions Call 1500
Population Size 50
Strategie DE/rand/1 - - -
F 0.9 - - -
Cr 0.8 - - -
w - 1 1 -
φ1 - 0.8 0.8 -
φ2 - 0.5 0.5 -

Table 5.2: Parameters obtained by Covery Arrays to be used by GE
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5.3 Results

The Table 5.3 shows an example of the heuristics obtained, there are shown only

one example per instance set even though were obtained one heuristic by instance.

The generated heuristics were applied as follows: once the heuristic was obtained

by the GE and it was analyzed if it only contains terminal components, each item

from the instances is proved with the heuristic to decide if the item will be packed

into the bin.

The Table 5.4 shows the results obtained with GE, it shows the results by each

Search Engine. The results were clustered to show the results by instances set. It

was performed the Friedman non-parametric test to discern the results obtained,

the Table 5.5 shows the ranking compute by the post-hoc procedure. The value of

the non-parametric test is 63.03125 and the p-value 3.42977E-8.

Instance Heuristic Generated

bin1data ( ( S - ( F - ( F + F ) ) ) ) ≤ ( abs( C ) )
bin2data ( ( F + S ) ) ≤ ( C )
bin3data ( ( abs( F ) + S ) ) ≤ ( abs( C ) )
binpack1 ( F ) ≤ ( abs( ( C - S ) ) )
binpack2 ( abs( ( F + S ) ) ) ≤ ( abs( ( S - ( S - C ) ) ) )
binpack3 ( ( abs( S ) + F ) ) ≤ ( C )
binpack4 ( abs( ( S + ( S - S ) ) ) ) ≤ ( abs( ( F - C ) ) )
binpack5 ( S ) ≤ ( ( C - F ) )
binpack6 ( F ) ≤ ( abs( ( S - C ) ) )
binpack7 ( abs( F ) ) ≤ ( abs( ( ( ( C / F ) * F ) - S ) ) )
binpack8 ( S ) ≤ ( abs( ( C - ( C / ( C / F ) ) ) ) )
hard28 ( ( F + S ) ) ≤ ( C )

Table 5.3: Example of the heuristic generate with the Grammar 5.1
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Instance DE PESO PSO UMDA

bin1data 316.106050 316.106050 316.106050 316.106050
bin2data 93.007030 93.007030 93.025230 93.007030
bin3data 1.885825 1.885825 1.885825 1.885825
binpack1 2.425894 2.425894 2.425894 2.425894
binpack2 2.259154 2.259154 2.259154 2.259154
binpack3 2.014334 2.014334 2.014334 2.014334
binpack4 1.838669 1.838669 1.838669 1.838669
binpack5 0.000000 0.000000 0.000000 0.000000
binpack6 0.000000 0.000000 0.000000 0.000000
binpack7 0.000000 0.000000 0.000000 0.000000
binpack8 0.000000 0.000000 0.000000 0.000000
hard28 0.655480 0.655480 0.655480 0.655480

Table 5.4: Results obtained with evolving heuristics by using GE with different
Search Engine

Algorithm Friedman

MTP 2.833333
BF 5.583333
Offline BF 5.791667
Offline FF 5.875000
FF 6.416667
DE 7.875000
PESO 7.875000
UMDA 7.875000
PSO 8.041667
Offline WF 8.083333
WF 8.083333
Offline AWF 9.500000
AWF 10.833333
NF 10.833333
Offline NF 14.500000

Table 5.5: Algorithm ranking based on a Friedman non-parametric test post-hoc
procedure to discern the results obtained by Evolving Heuristics
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5.4 Results Analysis

It has been shown that human designed heuristics like FF can be easily obtained by

GE. The heuristics were evolved without any apriori knowledge. It was only used a

grammar to represent the problem.

The proposal metaheuristics used as Search Engine gives the same performances,

except the PSO due it doesn’t include exploration and exploitation. The UMDA

doesn’t need to fine tuning its parameters and it allows to obtain same results than

the PESO and DE with parameter tuning.

Although is generated one heuristic by instance this methodology can be con-

siderate as HH due the generality, in all cases is used the same Grammar and the

methodology is applied in the same way for all instances.

For all cases were obtained heuristics that can be applied to a BPP instance.

The objective function used is capable to discern in a better way since it measures

the available space of the bins instead the number of bins.



Chapter 6

Evolving and Reusing Heuristics

6.1 Introduction

The previous Chapter shown that is possible to generate automatically heuristics

for the BPP, however those heuristics were made for each instances.

In the present Chapter is shown a methodology to generate heuristics, this

methodology is based on the HH concept to generate one heuristic by instance

set. The aim is to generate an heuristic that can solve in average a instance set.

The results obtained with the GE, using differents kernels, was compared against

the results obtained by the classical heuristics, shown in Section 2.5 ,by using Fried-

man non-parametric test.

6.2 Methodology

The Chapter 5 shows that is possible to generate a heuristic by an instance with

performance like the FF Heuristic. The new approach tries to rise the level of

generality of the methodology, it generates one heuristic by instance set, as can see

in Figure 6.1. It was proposed the Grammar 6.1, this Grammar allows to sort the

bins like the BF heuristic.
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The parameters used for each Search Engine are shown in Table 5.2, the param-

eters obtained for the previous test doesn’t change with the new Grammar.

33 experiments were performed independently and the median was used to com-

pare the results against those obtained with the heuristics described in Section

2.5. The comparison was implemented through the non-parametric test of Fried-

man [141, 142] , this non-parametric test used a post-hoc analysis to discern the

performance between the experiments and gives a ranking of them.

The Appendix A includes an Example to pack items based on classic heuristics

and GE.

Figure 6.1: Methodology used to Evolve Heuristics based on HH concept
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〈inicio〉 |= 〈exprs〉.(〈expr〉) <= (〈expr〉)
〈exprs〉 |= Sort(〈exprk〉, 〈order〉) | λ
〈exprk〉 |= Bin | Content

〈order〉 |= Asc | Des

〈expr〉 |= (〈expr〉〈op〉〈expr〉) | 〈var〉 | abs(〈expr2〉)
〈expr2〉 |= (〈expr2〉〈op〉〈expr2〉) | 〈var〉
〈var〉 |= F | C | S

〈op〉 |= + | * | - | /

Grammar 6.1: Grammar proposal to obtain results like the obtained by the BF
Heuristic.

6.3 Results

The Table 6.1 shows an example of the heuristics obtained, there are shown only

one example per instance set.

The Table 6.2 shows the results obtained with GE, it shows the results by each

Search Engine. It was performed the Friedman non-parametric test to discern the re-

sults obtained, the Table 6.3 shows the ranking compute by the post-hoc procedure.

The value of the non-parametric test is 76.77708 and the p-value 1.73075E-10.
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Instance Heuristic Generated

bin1data Sort ( Content , Asc ) . ( F ) ≤ ( ( C - S ) )
bin2data Sort ( Content , Des ) . ( F ) ≤ ( ( C - abs( S ) ) )
bin3data Sort ( Content , Asc ) . ( ( F + S ) ) ≤ ( C )
binpack1 Sort(Content, Des) . ( abs( F ) ) ≤ ( ( C - abs( S ) ) )
binpack2 Sort(Content, Des) . ( ( F + S ) ) ≤ ( C )
binpack3 Sort(Content, Des) . ( F ) ≤ ( abs( ( C - S ) ) )
binpack4 Sort(Content, Asc) . ( S ) ≤ ( ( C - F ) )
binpack5 Sort(Content, Des) . ( ( S + F ) ) ≤ ( C )
binpack6 Sort(Content, Des) . ( F ) ≤ ( ( abs( C ) - S ) )
binpack7 Sort(Content, Des) . ( abs( F ) ) ≤ ( abs( ( S - C ) ) )
binpack8 Sort(Content, Des) . ( abs( ( S + F ) ) ) ≤ ( C )
hard28 Sort ( Content , Asc ) . ( abs( ( S + F ) ) ) ≤ ( abs( C ) )

Table 6.1: Example of the heuristic generate with the Grammar 6.1

Instance DE UMDA PESO PSO

bin1data 47.545100 47.545100 47.545100 47.545100
bin2data 44.561000 44.561000 44.561000 44.561000
bin3data 1.390200 1.390200 1.390200 1.390200
binpack1 2.425800 2.425800 2.425800 2.604700
binpack2 2.259100 2.259100 2.259100 2.259100
binpack3 2.014500 2.014500 2.014500 2.014500
binpack4 1.838700 1.838700 1.838700 1.838700
binpack5 0.000000 0.000000 0.000000 0.000000
binpack6 0.000000 0.000000 0.000000 0.000000
binpack7 0.000000 0.000000 0.000000 0.000000
binpack8 0.000000 0.000000 0.000000 0.000000
hard28 0.655500 0.655500 0.655500 0.655500

Table 6.2: Results obtained with evolving heuristics and reusing it by using GE with
different Search Engine
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Algorithm Friedman

MTP 3.166667
BF 5.666667
Offline BF 5.958333
DE 6.208333
UMDA 6.208333
PESO 6.208333
PSO 6.458333
Offline FF 6.541667
FF 7.083333
Offline WF 9.083333
WF 9.083333
Offline AWF 10.500000
NF 11.166667
AWF 11.833333
Offline NF 14.833333

Table 6.3: Algorithm ranking based on a Friedman non-parametric test post-hoc
procedure to discern the results obtained by Evolving and Reusing Heuristics

6.4 Results Analysis

It has been shown that is possible to generate one heuristic per instance set, this

heuristic can solve well the instance set.

Once that the Grammar allow to sort the bins, it is possible to obtain a better

results than the obtained by the FF because the Grammar try to fill the bins starting

with the fuller.

All the heuristics generated by the GE can be applied to the test instances, unlike

those generated by the GP [143] given that the 3% of all generated heuristic can not

be applied, this is because the GE impose useful structures through the Grammar

in BNF.





Chapter 7

Improving Heuristics

7.1 Introduction

In previous chapters has been shown that is possible to use the Grammar Evolu-

tion with Search Engines to evolve heuristics for the bin packing problem. Those

heuristics have performance like the FirstFit and BestFit heuristic, this because the

Grammars includes elements from those heuristics.

The methodology used in the present Chapter is the same that the used in

Chapter 6, but in this Chapter is proposed a new Grammar to generate heuristics

online or offline. Also was included new metaheuristics trying to obtain better results

and with less parameters or with better exploitation or exploration methods.

The results obtained with the GE, using differents kernels, was compared against

the results obtained by the classical heuristics, shown in Section 2.5 ,by using Fried-

man non-parametric test.

7.2 Methodology

The methodology used in the present Chapter is the same that the used in Chapter

6 , but in this Chapter is proposed a new Grammar to generate heuristics online
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or offline. Also was included new metaheuristics trying to obtain better results and

with less parameters or with better exploitation or exploration methods.

The parameters used for each Search Engine are shown in Table 7.1. 33 ex-

periments were performed independently and the median was used to compare the

results against those obtained with the heuristics described in Section 2.5. The com-

parison was implemented through the non-parametric test of Friedman [141, 142] ,

this non-parametric test used a post-hoc analysis to discern the performance between

the experiments and gives a ranking of them.

The Appendix A includes an Example to pack items based on classic heuristics

and GE.

Instance BSO PSO UMDA cGA PESO DE
Functions Call 1500
Population Size 50
Strategie - - - - - DE/rand/1
F - - - - - 0.9
Cr - - - - - 0.8
w 1 1 - - 1 -
φ1 0.8 0.8 - - 0.8 -
φ2 0.5 0.5 - - 0.5 -

Table 7.1: Parameters obtained by Covery Arrays to be used by GE to improve the
heuristics

〈begin〉 |= 〈exproff〉〈exprsort〉(〈expr〉) <= (〈expr〉)
〈exproff〉 |= Sort(Elements, 〈order〉) | λ
〈exprsort〉 |= Sort(〈exprkind〉, 〈order〉) | λ
〈exprkind〉 |= Bins | SumElements

〈order〉 |= Asc | Des

〈expr〉 |= (〈expr〉〈op〉〈expr〉) | 〈var〉 | abs(〈expr2〉)
〈expr2〉 |= (〈expr2〉〈op〉〈expr2〉) | 〈var〉
〈var〉 |= F | C | S

〈op〉 |= + | * | - | /

Grammar 7.1: Grammar proposal to generate heuristics online and offline, this
grammar is based on Grammar 6.1
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7.3 Results

The Table 7.2 shows an example of the heuristics obtained, there are shown only

one example per instance set.

The Table 7.3 shows the results obtained with GE, it shows the results by each

Search Engine. It was performed the Friedman non-parametric test to discern the re-

sults obtained, the Table 7.4 shows the ranking compute by the post-hoc procedure.

The value of the non-parametric test is 104.51797 and the p-value 9.30069E-11.

Instance Heuristic Generated

bindata1 Sort(Elements,Des).Sort(Bin,Des).((F+S))≤(abs(C))
bindata2 Sort(Elements,Des).Sort(Cont,Des).(abs(S))≤(abs((C-F))))
bindata3 Sort(Elements,Des).Sort(Cont,Des).(S)≤((C-F))
binpack1 Sort(Content,Des).(abs(F))≤((C-abs(S)))
binpack2 Sort(Content,Des).((F+S))≤(C)
binpack3 Sort(Content,Des).(F)≤(abs((C-S)))
binpack4 Sort(Content,Asc).(S)≤((C-F))
binpack5 ((S+F))≤(C)
binpack6 (F)≤((abs(C)-S))
binpack7 (abs(F))≤(abs((S-C)))
binpack8 (abs((S+F)))≤(C)
hard28 Sort(Cont,Des).(F)≤(abs((C-S)))

Table 7.2: Example of the heuristic generate with the Grammar 7.1
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Instance BSO PSO UMDA cGA PESO DE

bin1data 44.560112 44.561430 44.560112 44.561455 44.560112 44.560135
bin2data 44.560112 44.561430 44.560112 44.561455 44.560112 44.560135
bin3data 1.390289 1.390289 1.390289 1.390289 1.390289 1.390289
binpack1 0.913949 0.914034 0.913949 2.604965 0.913949 0.913949
binpack2 0.705970 0.706004 0.705970 2.396851 0.705970 0.705970
binpack3 0.591541 0.591543 0.591541 2.133326 0.591541 0.591541
binpack4 0.495512 0.495522 0.495512 1.935710 0.495512 0.495512
binpack5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
binpack6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
binpack7 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
binpack8 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
hard28 0.655480 0.655350 0.655480 0.655350 0.655480 0.655480

Table 7.3: Results obtained with the improving heuristics by using GE with different
Search Engine

Algorithm Friedman

MTP 3.666667
BSO 5.333333
UMDA 5.333333
PESO 5.333333
DE 5.833333
PSO 6.333333
BF 7.666667
Offline BF 7.875000
FF 8.333333
cGA 8.333333
Offline FF 9.125000
WF 10.750000
Offline WF 12.083333
NF 12.833333
Offline AWF 13.500000
AWF 13.833333
Offline NF 16.833333

Table 7.4: Algorithm ranking based on a Friedman non-parametric test post-hoc
procedure to discern the results obtained by Improving Heuristics
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7.4 Results Analysis

It have been shown that is possible to generate automatically heuristic through

GE with better performance than the obtained by classic heuristic. The proposed

Grammar allow to generate online and offline heuristics, it depends the kind of

instance set used and the best way to handle it.

In the present Chapter were included the BSO and the cGA trying to obtain

better results than the obtained with the others. The BSO is one of the metaheuris-

tics that gives the best solutions, it is because the BSO includes Exploitation and

Exploration that the PSO and BA doesn’t includes. The cGA is UMDA’s predeces-

sor, however the simulation process that includes the cGA doesn’t allow to diversify

the solutions and the metaheuristic is trapped in local optima.





Chapter 8

Clustering Heuristics to reduce

the heuristics generated

8.1 Introduction

The Chapter 5, 6 and 7 have shown that is possible to generate heuristics using GE,

a Search Engine and a Grammar. The results obtained by the Grammar 7.1 shown

better results than the obtained by the classic heuristics.

The aim of this chapter is to propose a way to reduce the number of heuristics

generated. It was used Clustering process as metric to define the number of heuristics

and assign a instances to a heuristics.

The results obtained by the GE with the Clustering process, using differents

kernels, was compared against the results obtained by the classical heuristics, shown

in Section 2.5 ,by using Friedman non-parametric test.

8.2 Clustering

The BPP doesn’t have too much to parametrize apart the item’s weight and the bin’s

capacity. Many researchers have investigated the range and weights and they have
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found that a smaller range makes the instance more difficult for common algorithms

[144] [145] [146] [147].

Schwerin [146] showed that all the items inside the bin packing instance can be

distributed as follows:

w ∈ [vLχ, vUχ] (8.1)

where:

a) w: item.

b) vL: lower bound.

c) vU : upper bound.

d) χ: bin capacity.

The expression (8.1) normalizes the weights between 0 and 1. In [144] [148] was

proposes to clustering the bin packing instances into three groups, as shown in Table

8.1, such clusters were based on the expression (8.1).

Group Condition
Triplets vL = 1/4 y vU = 1/2
Hards w ' 1/3 or close to 1/n where n ≥ 3
Regulars the others

Table 8.1: Bin Packing Instance Clusters

8.3 Methodology

The methodology used in this Chapter is based on the methodology shown in Chap-

ter 7. One of the more important changes is that methodology generates no one

heuristic per instance set, this methodology generate one heuristic per cluster. All

the instances are join up and it generate only three heuristics using the Clustering
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shown in Section 8.2. With this only is necessary to test the instance with the HH

and define if the heuristics has been evolved or if is necessary to define one heuristic.

33 experiments were performed independently and the median was used to com-

pare the results against those obtained with the heuristics described in Section

2.5. The comparison was implemented through the non-parametric test of Fried-

man [141, 142] , this non-parametric test used a post-hoc analysis to discern the

performance between the experiments and gives a ranking of them.

The Appendix A includes an Example to pack items based on classic heuristics

and GE.

8.4 Results

The Table 8.2 shows an example of the heuristics obtained, there are shown only

one example per Cluster.

It was performed the Friedman non-parametric test to discern the results ob-

tained, the Table 8.3 shows the ranking compute by the post-hoc procedure. The

value of the non-parametric test is 113.83615 and the p-value 7.49190E-11.

The Search Engines like BSO, UMDA and PESO obtained the best results with

each Grammar. The comparison between the cluster process and without the cluster

process was skipped because with a Friedman non-parametric test was shown that

have the same performance.

Instance Heuristic Generated

Triplets ( abs( ( F + S ) ) ) ≤ ( C )
Hard Sort ( Bin , Asc ) . ( ( S + F ) ) ≤ ( abs( C ) )
Regular Sort ( Cont , Des ) . ( ( F + abs( S ) ) ) ≤ ( C )

Table 8.2: Example of the heuristic generate with the Cluster
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Algorithm Friedman

MTP 5.333333
BSO with Grammar 7.1 7.166667
UMDA with Grammar 7.1 7.166667
PESO with Grammar 7.1 7.166667
DE with Grammar 7.1 7.666667
PSO with Grammar 7.1 8.333333
BF 10.750000
Offline BF 11.041667
DE with Grammar 6.1 11.875000
UMDA with Grammar 6.1 11.875000
PESO with Grammar 6.1 11.875000
Offline FF 12.458333
PSO with Grammar 6.1 12.458333
FF 13.000000
cGA with Grammar 5.1 13.000000
DE with Grammar 5.1 14.625000
PESO with Grammar 5.1 14.625000
UMDA with Grammar 5.1 14.625000
PSO with Grammar 5.1 14.791667
Offline WF 16.416667
WF 16.416667
Offline AWF 17.833333
NF 19.166667
AWF 20.833333
Offline NF 24.500000

Table 8.3: Algorithm ranking based on a Friedman non-parametric test post-hoc
procedure to discern the results obtained by the clustering process and the different
Search Engine with Grammars
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8.5 Results Analysis

Based on the obtained results, it is possible to conclude that it is possible to cluster

the instances using Schwerin’s metric and generate heuristics using GE.

The results obtained show that with only three heuristics applied to the Bin

Packing Instances we can obtain the same performance that if we make one heuristic

by each instance set.

The algorithms PESO, BSO and UMDA got the best performance, among these

the UMDA used the less parameters and the others need the Covery Arrays method

to tuning them parameters. The worst a algorithms is the cGA due it is the UMDA’s

precursor.

This test included all the Grammars proposed with all the algorithms used, the

Exact Method and the classic Heuristics, the aim is to compare the performances of

these classic methods against those generated by the GE with the Search Engines

and the differents Grammars.

It can be show how the MTP algorithm is the best way to solve a BPP instance,

however due the BPP’s complexity the heuristics generated by the GE using BSO,

PESO or UMDA algorithms as Search Engine are the feasible way to solve the BPP

instance.





Chapter 9

Conclusions and future work

This dissertation uses elements and methods at Optimization, Metaheuristic, Hyper-

Heuristics and a Problem from Operations Research. The proposed approach allows

to generate heuristics for a particular problem using Grammar Evolution, it was

presented a generic framework to use differents fitness functions and Metaheuristics

like an Hyper-Heuristics kernel.

The Chapter 5 presented a initial test to know if the GE can be used to generate

Heuristics, this chapter is based on [18] where is used GP to evolve Bin Packing’s

heuristics. The Grammar 5.1 proposed in this chapter is based on the heuristics

components shown in Table 5.1. The heuristics generated with this Grammar have

a performance like the FF Heuristic.

The Chapter 6 shown a modified Grammar 6.1, this Grammar lets to the HH

sort the bins to obtain a better performance that the Grammar 5.1. With this new

Grammar was possible to generate heuristics who sorts bins,like the BF heuristic.

The metaheuristics used were the same that in the Chapter 5.

In Chapter 7, was proposed the Grammar 7.1 to evolve heuristics online and

offline, the aim of this Grammar is to choose the best way to pack items. Sometimes

is better handle an instance with sort elements before to start the packing process,

the HH using the Grammar can generate heuristics for both cases.
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The Chapter 8 proposed a methodology to reduce the number of heuristic gen-

erated for the test instances. This methodology is based on clustering shown in

Section 8.2, it allows to the HH generates only one heuristic per cluster. The re-

sults obtained shown that there aren’t statistical difference between generate one

heuristic per instances set or using the proposed methodology.

With the results obtained in the previous chapters, it can be concluded the

follow:

a) It is possible to use GE like an improved of Genetic Programming, it is based

on the GE uses a BNF Grammar to guide the evolution obtaining congruent

solutions.

b) The GE can use different Search Engines to evolve the results however are

prefer Search Engines who includes Exploration and Exploitation.

c) The parameters of the algorithms used into Search Engines must be tuning to

obtain good results, it was used a fine tuning methodology based on Covery

Arrays.

d) It is possible to generate a Grammar to evolve heuristics for a specific problem,

the Grammar must include the problem’s components.

e) It is possible to use the GE as Generation’s HH.

f ) It is possible to uses a Clustering Process to reduce the number of heuristics

generated for the BPP, the obtained results are similar to the obtained without

the Clustering Process but with less heuristics generated.

The main contributions of the present work are the follows:

a) To propose another metaheuristic to generate heuristics, like a generation’s

HH.
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b) To incorporate different metaheuristics as kernel using the Grammar Evolution

as an Indirect representation.

c) To propose grammars to evolve bin packing heuristics, the contributions of

each one are the follows:

. The Grammar 5.1 generated heuristics with performance like the FF cla-

sic heuristic.

. The Grammar 6.1 improved the heuristics generated by means the BF

heuristic incorporating bin’s sorts to obtain best results.

. The Grammar 7.1 handle the instance set like online or offline problem.

d) To generated by the GE can be applied to the BPP, unlike those generated by

the GP [18] given that the 3% of all generated heuristic can not be applied,

this is because the GE impose useful structures through the Grammar in the

BNF.

There are some directions to research in order to extend the work presented in

this thesis, Extensions and Future Work:

a) It is possible to apply another fine tuning algorithms, the Covering Arrays

method used is based on a 3rd software made by the NIST however the con-

struct of the Covery Arrays is a NP-Complete problem.

b) The problem shown in the present work is the 1D Bin Packing but it can

extend to 2D and 3D Bin Packing problems, also can be used with Knapsack

problems changing the Grammar.

c) The methodology presented can be applied to another kind of problems, is

possible to generate heuristics to problems with unknown heuristics.
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d) The heuristics generated contains a large number of terminals, with the BNF

is not possible to reduce the number of terminals, it is necessary to look up a

new Grammar that allows to reduce the heuristics generated.



Appendix A

Packing Examples

Suppose that we have the following instance:

a) c = 100

b) n = 10

c) w = 26, 26, 33, 20, 41, 49, 19, 34, 22, 29

A.1 MTP

The MTP can be used to pack the items, with this algorithm we obtain the following

bins:

a) [49, 29, 22]

b) [41, 33, 26]

c) [34, 26, 20, 19]

When was applied the fitness functions, shown in Section 2.3, to the bins ob-

tained by the MTP algorithm was obtained the following results: Function 2.6 =

3, Function 2.7 = 0.0100 and Function 2.8 = 0.0066. This algorithm is an Exact

Method and the values obtained with it are the optimal results.

77
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A.2 FirstFit

To solve the test instance using the online FF it is chosen each item and it is placed

in the first bin that it can be placed. In this case it was begun with the item 26 and

it was placed in the first bin. The second item, the item 26, is tested if it can be

placed in the only bin used and the space occupied with this two elements doesn’t

exceed the bin size and the item is placed. The next item, the item 33, is tested

again in the bin used previously and the three elements doesn’t exceed the bin size

and the item is placed. The next item, the item 20, is tested but with this element

the bin exceeds its capacity and it is necessary to placed the item in a new bin. With

the remaining elements is applied the same methodology and the bins obtained are

the follow:

a) [26, 26, 33]

b) [20, 41, 19]

c) [49, 34]

d) [22, 29]

The results obtained with the fitness function are: Function 2.6 = 4, Function

2.7 = 1.01 and Function 2.8 = 0.4221.

The offline FF heuristic can be applied to the same instance, one of the most

important changes is that the items must be ordering by the item weight. If we

apply the offline FF then we have the items ordered as follows:

a) w = 49, 41, 34, 33, 29, 26, 26, 22, 20, 19

The way to pack them is the same of the online FF. The bins obtained by this

heuristics are:

a) [49, 41]
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b) [34, 33, 29]

c) [26, 26, 22, 20]

d) [19]

The results obtained with the fitness function are: Function 2.6 = 4, Function

2.7 = 1.01 and Function 2.8 = 0.3371.

The results obtained by the online and offline FF with the Fitness Function 2.6

and 2.7 are equals, however the Fitness Function 2.7 shown that is better to sort

the items before to start the packing process.

A.3 BestFit

To solve the test instance using online BF is like the solve it with the FF but the

BF sorts the bins from less to more space available and place the item in the first

bin with space available, if not exists one bin with this condition is placed in a new

bin. The items are placed as follows:

a) [26, 26, 33]

b) [49, 34]

c) [20, 41, 19]

d) [22, 29]

The results obtained with the fitness function are: Function 2.6 = 4, Function 2.7

= 1.01 and Function 2.8 = 0.4221.

The offline BF works like the online version, only needs to sort the items like the

offline FF. The bins obtained by this heuristics are:

a) [34, 33, 29]
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b) [26, 26, 22, 20]

c) [49, 41]

d) [19]

The results obtained with the fitness function are: Function 2.6 = 4, Function 2.7

= 1.01 and Function 2.8 = 0.3371.

A.4 Grammatical Evolution

To apply the GE is necessary to define the Search Engine and its parameters, however

we gonna explain the process ones we have the Integer string, how it is mapping

with the BNF and how it is testing with the instance.

Suppose that we have the next individuals of a certain metaheuristic,

ind1 = {1, 1, 2, 3, 1, 2, 3, 2, 1}, ind2 = {1, 1, 2, 3, 1, 2, 2, 2, 1} and ind3 =

{1, 1, 1, 2, 3, 2, 2, 2, 3, 3}, and we have the Grammar 5.1. To obtain the fitness of

this individual is necessary to map the individual’s values through the grammar, as

shown in Figure 3.3. The mapping results are the follows:

a) ind1 = (S + S) ≤ (F )

b) ind2 = (S + C) ≤ (F )

c) ind3 = ((S ∗ C))− abs(< expr2 >)) ≤ (< expr >)

Now we can apply those heuristics to the instance, the way to apply this is to

choose each item and test it with the heuristic generated.

The first generated heuristic is evaluated, trying to evaluate with each item and

looking to comply the inequality, if the inequality is not meet then the item is place

in a new bin. The bins obtained with this heuristics are:

a) [26, 26, 20]
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b) [33, 19, 22]

c) [41, 29]

d) [49]

e) [34]

The results obtained with the fitness function and the heuristic (S + S) ≤ (F ) are:

Function 2.6 = 5, Function 2.7 = 2.01 and Function 2.8 = 0.6176.

The second heuristic is applied like the first, however the inequality never is

meet, then all the items are placed in one bin and each bin only have one item. The

bins obtained with this heuristics are:

a) [26]

b) [26]

c) [20]

d) [33]

e) [19]

f ) [22]

g) [41]

h) [29]

i) [49]

j ) [34]

The results obtained with the fitness function and the heuristic (S + C) ≤ (F ) are:

Function 2.6 = 10, Function 2.7 = 7.01 and Function 2.8 = 0.9023.
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The last heuristic can’t be applied because this heuristic have non-terminals and

it can be replaced with values from the instance. In this case the fitness values are

the infinity, with this the Search Engine will be discard those elements through the

selection.
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